当前位置: 首页 » 网站入侵 » 从定位的时机来看,把时界定位

从定位的时机来看,把时界定位

作者:hacker 时间:2022-12-22 阅读数:210人阅读

本文目录一览:

全球定位系统简介

全球定位系统(Global Positioning System,简称GPS),是利用卫星发射的无线电信号进行导航定位。该系统具有全球性、全天候、高精度、快速实时三维导航、定位、测速和授时功能,以及良好的保密性和抗干扰性。由于该系统不受气象条件的限制,自动化程度较高,因而迅速被世界各国所采用。

(一)GPS全球定位系统的组成

GPS全球定位系统主要由三大部分组成,即空间星座部分(GPS 卫星星座)、地面监控部分和用户设备部分。

1.空间星座部分

全球定位系统的空间星座部分,由24颗卫星组成,其中包括3颗可随时启用的备用卫星。工作卫星分布在6个近圆形轨道面内,每个轨道面上有4颗卫星。卫星轨道面相对地球赤道面的倾角为55°,各轨道平面升交点的赤经相差60°,同一轨道上两卫星之间的升交角距相差90°。轨道平均高度为20 200km,卫星运行周期为11小时58分。同时在地平线以上的卫星数目随时间和地点而异,最少为4颗,最多时达11颗。

在全球定位系统中,GPS卫星的主要功能是:接收、储存和处理地面监控系统发射来的导航电文及其他有关信息;向用户连续不断地发送导航与定位信息,并提供时间标准、卫星本身的空间实时位置及其他在轨卫星的概略位置;接收并执行地面监控系统发送的控制指令,如调整卫星姿态和启用备用时钟、备用卫星等。

2.地面监控部分

GPS的地面监控系统主要由分布在全球的5个地面站组成,按其功能分为主控站(MCS)、注入站(GA)和监测站(MS)3种。

主控站有1个,设在美国科罗拉多的斯普林斯(Colorado Springs)。主控站负责协调和管理所有地面监控系统的工作,其具体任务有:根据所有地面监测站的观测资料推算编制各卫星的星历、卫星钟差和大气层修正参数等,并把这些数据及导航电文传送到注入站;提供全球定位系统的时间基准;调整卫星状态和启用备用卫星等。

注入站又称地面天线站,其主要任务是通过一台直径为3.6m的天线,将来自主控站的卫星星历、钟差、导航电文和其他控制指令注入相应卫星的存储系统,并监测注入信息的正确性。注入站现有3个,分别设在印度洋迪戈加西亚(Diégo Garcia)、南太平洋卡瓦加兰(Kwajalein)和南大西洋阿松森群岛(Ascencion)。

监测站共有5个,除上述4个地面站具有监测站功能外,还在夏威夷(Hawaii)设有1个监测站。监测站的主要任务是连续观测和接收所有GPS卫星发出的信号并监测卫星的工作状况,将采集到的数据连同当地气象观测资料和时间信息经初步处理后传送到主控站。

3.用户设备部分

全球定位系统的用户设备部分,包括GPS接收机硬件、数据处理软件和微处理机及其终端设备等。

GPS信息接收机是用户设备部分的核心,一般由主机、天线和电源3部分组成。其主要功能是跟踪接收GPS卫星发射的信号并进行变换、放大、处理,以便测量出GPS信号从卫星到接收机天线的传播时间;解译导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。根据接收的卫星信号频率,又可分为单频(L1)和双频(L1,L2)接收机等。

(二)GPS定位的基本原理

利用GPS进行定位的基本原理,是以GPS卫星和用户接收机天线之间距离(或距离差)的观测量为基础,并根据已知的卫星瞬时坐标来确定用户接收机所对应的点位,即待定点的三维坐标(x,y,z)卫星之间的距离。由此可见,GPS定位的关键是测定用户接收机天线至GPS卫星之间的距离。

GPS进行定位的方法,根据用户接收机天线在测量中所处的状态来分,可分为静态定位和动态定位;若按定位的结果进行分类,则可分为绝对定位和相对定位。

所谓绝对定位,是在WGS84坐标系中,独立确定观测站相对地球质心绝对位置的方法。相对定位同样在WGS84坐标系中,确定的则是观测站与某一地面参考点之间的相对位置,或两观测站之间相对位置的方法。

所谓静态定位,即在定位过程中,接收机天线(待定点)的位置相对于周围地面点而言,处于静止状态。而动态定位正好与之相反,即在定位过程中,接收机天线处于运动状态,也就是说定位结果是连续变化的,如用于飞机、轮船导航定位的方法就属于动态定位。

各种定位方法还可有不同的组合,如静态绝对定位、静态相对定位、动态绝对定位和动态相对定位等。

(三)GPS实时差分定位

利用GPS对运动物体进行实时定位,可采用GPS接收机单点定位,由于其定位精度受钟差、大气折射率等误差影响,利用C/A码伪距单点定位精度很低。为提高实时定位精度,常采用GPS差分定位技术。

GPS动态差分的方法通常有3种。

1)位置差分。将基准站GPS接收机伪距单点定位得到的坐标值与已知坐标作差分,并将坐标修正值无线电传送至流动站,对流动站测得坐标进行修正。

2)伪距差分。利用基准站已知坐标和卫星星历,求卫星到基准站的几何距离,作为距离精确值,将此值与基准站所测的伪距值求差,作为差分修正值,通过数据链传给流动站,流动站接收差分信号后,对所接收的每颗卫星的伪距观测值进行修正,然后再进行单点定位。

3)载波相位动态实时差分(RTK)。GPS实时动态RTK测量技术,是以载波相位观测量为基础的实时差分GPS测量技术,是当代GPS测量技术发展中的一个新突破。动态实时差分技术的精度取决于高频数据传输设备的可靠性与抗干扰性;软件解算系统对保障成果可靠与精确具有决定性作用。

在常规RTK和差分GPS的基础上又建立起一种网络RTK定位技术,又叫基准站RTK。它是在一定区域内建立多个坐标为已知的GPS 基准站,对该地区进行网状覆盖,并以这些基准站为基准,计算和发播相位观测值误差改正信息。对该地区内的卫星定位用户进行实时改正的定位方式,又称多基准RTK。该方法的主要优点为覆盖面广,定位精度高,可实时提供厘米级定位。

(四)我国北斗卫星导航系统

北斗卫星导航系统〔BeiDou(COMPASS)Navigation Satellite System〕是中国正在实施的自主研发、独立运行的全球卫星导航系统,与美国的GPS、俄罗斯的格洛纳斯、欧盟的伽利略系统并称全球四大卫星导航系统。北斗卫星导航系统由空间端、地面端和用户端3部分组成。空间端包括5颗静止轨道卫星和30颗非静止轨道卫星。地面端包括主控站、注入站和监测站等若干个地面站。用户端由北斗用户终端以及与美国GPS、俄罗斯格洛纳斯(GLONASS)、欧洲伽利略(GALILEO)等其他卫星导航系统兼容的终端组成。

该系统可在全球范围内全天候、全天时为各类用户提供高精度、高可靠的定位、导航、授时服务并兼具短报文通信能力。已经具备区域导航、定位和授时能力,定位精度优于20m,授时精度优于100ns。

全球四大定位系统有哪些?

全球四大定位系统为:美国GPS、欧盟伽利略、俄罗斯格洛纳斯、中国北斗。

1、美国GPS

由美国国防部于20世纪70年代初开始设计、研制,于1993年全部建成。1994年,美国宣布在10年内向全世界免费提供GPS使用权,但美国只向外国提供低精度的卫星信号。据说该系统有美国设置的“后门”,一旦发生战争,美国可以关闭对某地区的信息服务。

2、欧盟伽利略

欧盟于1999年首次公布伽利略卫星导航系统计划,其目的是摆脱欧洲对美国全球定位系统的依赖,打破其垄断,组成“伽利略”卫星定位系统。该项目总共将发射30颗卫星,位置精度达几米,亦可与美国的GPS系统兼容。

3、俄罗斯格洛纳斯

“GLONASS ”是由俄罗斯单独研发部署的卫星导航系统,该项目启动于上世纪70年代俄罗斯有22颗Glonass卫星在轨运行,但仅有16颗运转正常。该系统需要有18颗卫星才可满足继续为全俄罗斯提供导航服务的需求,至少需要24颗卫星才提供全球导航服务。

4、中国北斗

2003年5月25日零时34分,中国在西昌卫星发射中心用“长征三号甲”运载火箭,成功地将第三颗“北斗一号”导航定位卫星送入太空,前两颗“北斗一号”卫星分别于2000年10月31日和12月21日发射升空,运行导航定位系统工作稳定,状态良好。

全球定位系统有哪些?如何定位?

GPS全球定位系统

现代战争的诸军兵种协同作战,要求战区指挥员必须随时随地掌握各参战单位的准确位置;飞机、舰艇遂行各种作战任务,亦需要随时了解其自身的位置信息;发射地—地、空—地导弹,必须首先测定出自己发射地点和精确位置;甚至位于丛林或沙漠地带作战的单兵,为了不迷失方向,也最好能为他们提供一种便于随身携带的小巧轻便的定位设备。凡此种种,都客观地反映出了对发展某种高精度(譬如定位误差不超过10米)、大覆盖(最好能覆盖全球)定位系统的广泛而迫切的作战使用需求。为此,早在70年代初期,美国政府就不惜投入巨大的人力、物力和财力,开展了对高精度全球定位系统的研制工作,经过十余年的不懈努力,终于在80年代的中、后期,使GPS全球定位系统逐步投入了运行。

所谓“GPS”,就是英文“全球定位系统”三个词的词头缩写,它由平均分布在围绕地球的6个圆形轨道上的24颗人造地球卫星(即导航卫星),分设在美国本土及其属地上的空控站、注入站、监测站、以及广泛装备于飞机、舰艇、坦克乃至单兵的GPS接收机等组成。

GPS系统采用“时间同步、单程测距”的原理来实现定位、简单地说就是用户同时向已知其位置的3个导航卫星分别进行距离测量,然后再以该卫星为球心,以所测得的距离为半径,在空间画出3个球面,则该3个球面的相交点,就是用户的所在位置了。所谓“时间同步”是指卫星上的时钟与用户设备内的时钟是精确同步的(譬如说校准到两者之间几万年才差1秒钟);而“单程测距”则是指从导航卫星上发出的无线电测距信号在传播到用户设备的这一单向行程中,就可以把它们之间的距离测量出来。试让我们来进行一下简单的计算:假定卫星以整秒时刻(即1、2、3)向外发播无线电测距信号,而用户设备所接收到的测距信号比整秒、时刻晚了0.0666秒种,已知电波的传播速度为300,000千米/秒,则用户至该卫星的距离就等于300,000千米/秒与0.0666秒的乘积,即19,980千米。请注意,这里是假定卫星和用户的时钟是完全同步的,即它们之间没有上点误差,这样的计算才是正确的。如果用户时钟与卫星时钟存在着时间误差,则还必须根据这个误差对计算结果进行一些修正。GPS卫星组网之所以采用24颗卫星的配置方案,就是为了保证位于世界任一地点的用户,都可以随时接收到至少4个导航卫星的信号,其中3个卫星的信号来测距定位,第4个卫星的信号就是用来计算用户时钟的误差的,至于其具体的算法,在这是就不予评述了。

GPS全球定位系统可实时连续地为用户提供三维空间的位置信息、测定用户的运动速度,并可提供精确的授时勤务,其定位误差不大于10米,授时误差不大于0.1秒,授时精度优于0.000001秒,且其电波信号还具有一定的抗干扰的能力。如果将我各作战单位的GPS位置信息通过无线电通信不断地传输到作战指挥中心,再加上通过我侦察手段所获取的敌方目标的位置信息,然后统一集中在大屏幕显示器上加以显示,就可以使我区指挥员能够随时掌握整个战场上敌我双方的动态态势,从而为其作战指挥提供了一项准确而重要的依据。这样一来,兵家几千年以来的“运筹于帷幄之中,决胜于千里之外”的梦想,不就是最终得以真正实现了吗?

参考资料:

全球定位系统(GPS)简介

全球定位系统是用人造地球卫星进行点位测量的系统。它广泛用于海空导航、导弹制导、动态观测、时间传递、速度测量、车辆引导等领域。在测绘技术和工程建设方面,不仅在建立大地控制网、全球性的地球参数测量、板块运动状态监测、航空航天参数测定、建立陆地海洋大地测量基准等方面得到应用,而且在工程建设的规划、设计、施工、验收与监测、大型精密设备安装、变形观测、线路测量、精密工程测量等方面也日益广泛地得到引用。

一、GPS测量的优点

GPS是全球定位系统(Global Positioning System)的简称。GPS测量是利用卫星进行定位的一项新的测量技术。与传统的测量技术相比,它具有如下几个方面的优点:

1)用途广。用GPS信号可进行海空导航、车辆引行、导弹制导、精密定位、工程测量、动态观测等。

2)观测简便。测量时,测量员只要将GPS接收机天线单元安置在测站上,接通电源,启动接收单元;在结束测量时,只需量取天线高度,关闭电源便完成野外数据采集。另外,GPS是全天候测量系统,因此,可以在较短时间内以较少人力物力完成外业工作。

3)精度高。用载波相位测量作相对定位,相对定位精度可达到±(5mm+1×10-6·D)(D是比例误差)的距离精度,观测时间小于1h。若采用快速定位方法,观测时间仅需2min左右,即能达到厘米级的定位精度。

4)经济效率高。GPS测量不要求测站之间通视,可以省去常规测量所需的造标费用,又由于GPS测量精度高,作业时间短,因此经济效益十分显著。

二、GPS系统

GPS系统包括下列三大部分。

1.GPS卫星星座(空间部分)

GPS系统包括24颗卫星,均匀分布在6个近似圆形的轨道上,各个轨道平面之间交角为60°,每个轨道上有4颗卫星,轨道距地面高度约20200km,卫星绕地球一周的时间为12h,地球上任何地方在任何时刻都能收到至少4颗卫星发来的信号。

每个GPS卫星连续地发送两个不同频率的无线电波(L1=1575.42MHz,L2=1227.60MHz)。载波上调制了多种信号,最主要的有测距码(P精码、C/A 粗码)和导航电文。测距码用于测量卫星到地面点接收机的距离;导航电文用于计算卫星的轨道参数。

2.地面监控系统(地面控制部分)

GPS卫星上的各种设备是否正常工作,以及卫星是否沿着预定轨道运行,都由地面监控系统进行监测和控制。地面监控系统包括一个主控站、3个注入站和5个监测站,分布在美国本土和世界其他地区的美军基地上。

GPS卫星是一种动态的已知点,它是依据卫星发送的星历(描述卫星运动及其轨道的参数)计算而得的。每颗GPS卫星所播发的星历是由地面监控系统提供的。

另外,地面监控系统还监测各颗卫星的时间,并计算它们的有关改正数,进而由导航电文发送给用户,以确保各颗卫星处于同一GPS时间系统。

3.GPS接收机

GPS接收机的主要功能是解码,分离出导航电文,进行相位和伪距测量。GPS接收机从结构来讲,主要由五个单元组成:天线和前置放大器;信号处理单元,它是接收机的核心;控制和显示单元;存储单元;电源单元。

GPS接收机主要用于以下两个方面:

1)静态定位。用户天线在跟踪GPS卫星的过程中固定不变,接收机高精度地测量GPS信号的传播时间,连同GPS卫星在轨的已知位置,可算出固定不动的用户天线的三维坐标。后者可以是个固定点,也可以是若干点位构成的GPS网。静态定位的特点是多余观测量大,可靠性强,定位精度高。

2)动态定位。载体(车辆、船舰、飞机等)上的用户天线在跟踪GPS卫星的过程中相对地球运动,接收机用GPS信号实时地测得运动载体的状态参数。动态定位的特点是逐点测定运动载体的状态参数,多余观测量少,精度较低。

GPS接收机的型号很多,按其所用载波频率的多少可分为用一个载波频率(L1)的单频接收机和用两个载波频率(L1L2)的双频接收机。单频接收机便宜,而双频接收机能消除某些大气延迟的影响。对于边长大于10km的精密测量,最好采用双频接收机,而一般的控制测量,单频接收机就行了。

三、GPS定位的基本原理

GPS测量有伪距与载波相位两种基本的观测量。GPS接收机测量了卫星信号(测距码)由卫星传播至接收机的时间,再乘上电磁波传播的速度,便得到由卫星到接收机的伪距。但由于传播时间含有卫星时钟与接收机时钟不同步误差,以及测距码在大气中传播的延迟误差等,所以求得的伪距并不等于卫星与测站的几何距离。载波相位测量是把接收到的卫星信号和接收机本身的信号混频,再进行相位测量。伪距测量的精度约为一个测距码的码元长度的百分之一,对P码而言约为30cm,对C/A码而言为3m左右。而载波的波长则短得多(分别为19cm和24cm),所以载波相位测量精度一般为1~2mm。由于相位测量只能测定载波波长不足一个波长的部分,因此所测的相位可看成是波长整倍数未知的伪距。

GPS定位时,把卫星看成是动态的已知控制点,利用所测的距离进行空间后方交会,便可得到接收机的位置。

GPS定位包括单点定位和相对定位。

独立确定待定点在WGS-84世界大地坐标系中的绝对位置的方法,称为单点定位或绝对定位。其优点是只需一台接收机即可独立定位;外出观测的组织及实施较为自由方便,数据处理也较简单,但其结果受卫星星历误差和卫星信号传播过程中的大气延迟误差的影响比较显著,所以定位精度较差,一般为几十米。单点定位在船舶、飞机的导航、地质矿产勘探、暗礁定位、海洋捕鱼、国防建设及低精度测量等领域中有着广泛的应用前景。

相对定位是确定同步跟踪相同的GPS卫星信号的若干台接收机之间的相对位置(三维坐标差)的一种定位方法。相对定位测量时,许多误差对同步观测的测站有相同的或大致相同的影响。因此,计算时,这些误差可以抵消或大幅度削弱,从而获得很高精度的相对位置,一般精度为几毫米至几厘米。相对定位与单点定位相比,外业观测的组织与实施以及数据处理就复杂一些。相对定位广泛用于大地测量、工程测量、地壳形变监测等精密定位领域。

四、GPS相对定位的主要误差来源

1)时钟误差。卫星上的时钟误差和接收机的时钟误差都是GPS测量的主要误差。

2)卫星位置误差。GPS卫星的位置是依据卫星发送的星历计算而得的,其平均误差约为20mm。令dr为卫星位置误差,则其对相对定位的影响可近似用下式估算,即

建筑工程测量

式中:D——两接收机问的距离;

dD——相对位置误差;

S——接收机到卫星的距离,近似为20000km。

例如dr=20m,对两点相位位置的影响为1×10-6。

3)大气延迟影响。卫星信号要穿过大气层才到达接收机,因此大气对卫星信号有延迟作用(影响其传播速度)。从地面到约50km高空的大气叫对流层,对流层的延迟是大气中气温、气压和湿度的函数,可通过测站上所测量的气象要素进行改正。50km以上高空的大气叫电离层,它的影响用双频接收机的测量结果来改正。

4)多路径误差。经某些物体表面反射后到达接收机的信号和直接来自卫星的信号叠加进入接收机,使测量产生误差。其影响与天线周围环境有关。因此,选择合适的测站位置是减少此项误差的主要措施。

5)观测误差。观测误差与测量所用信号的波长有关。用C/A码和P码做伪距观测,误差分别为3m和0.3m;载波相位测量,误差为1~2mm。

一般来讲,GPS相对定位的精度可表示为

σ2=a2+b2·D2 (6-26)

式中:σ——相对定位中误差;

a——固定误差部分;

b——比例误差部分;

D——两测站间的距离。

复习题

1.经纬仪导线测量的外业工作包括哪些内容?

2.选定导线点时应注意哪些问题?

3.导线与附合导线的计算有哪些异同点?

4.按表6-11已知数据,计算闭合导线各点的坐标值。

表6-11 闭合导线坐标

标签: 把时界定位
  • 评论列表
  •  
    发布于 2022-12-06 13:24:41  回复
  • 置;甚至位于丛林或沙漠地带作战的单兵,为了不迷失方向,也最好能为他们提供一种便于随身携带的小巧轻便的定位设备。凡此种种,都客观地反映出了对发展某种高精度(譬如定位误差不超过10米)、大覆盖(最好能覆盖全球)定位系统的广泛而迫切的作战使用需求。为此,早在70年代初期,

发表评论: